Recent progresses in numerical analysis of SDEs with non-globally Lipschitz coe?icients

发布者:文明办发布时间:2023-03-27浏览次数:233


主讲人:王小捷 中南大学教授


时间:2023年3月28日10:00


地点:腾讯会议 780 312 028


举办单位:数理学院


主讲人介绍:王小捷,中南大学数学与统计学院教授,博士生导师,主要研究方向为随机微分方程数值方法及计算金融等。在随机常、偏微分方程数值算法与理论方面做出一系列研究成果,相关论文发表在SIAM Journal on Numerical Analysis、Mathematics of Computation、SIAM Journal on Scientific Computing、IMA Journal of Numerical Analysis、BIT Numerical Mathematics、Journal of Scientific Computing、Advances in Computational Mathematics、Stochastic Processes and their Applications等计算数学或概率论国际主流刊物,主持多项国家自然科学基金项目。


内容介绍:This talk is devoted to our recent progresses in numerical analysis of SDEs with non-globally Lipschitz coe?icients. Both implicit and explicit schemes are considered for SDEs under global monotonicity conditions, with strong convergence rates revealed. Positivity-preserving schemes are also considered for some practical SDE models and the strong approximation error analysis is reported. Finally, we look at numerical analysis of SDEs under non-global monotonicity conditions. This is based on a joint work with Lei Dai and Jiayi Wu.

热点新闻
最新要闻